

Protocol	#5.1
Title	BOMB plasmid DNA extraction
Keywords	HT DNA miniprep, Silica beads, plasmid extraction
Authors	Oberacker P*, Stepper P*, Bond DM*, Höhn S, Focken J, Meyer V, Schelle L, Sugrue VJ, Jeunen
	GJ, Moser T, Hore SR, von Meyenn F, Hipp K, Hore TA# and Jurkowski TP#
Citation	Oberacker et al. (2019), Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput
	nucleic acid manipulation. PLOS Biology,17(1), https://doi.org/10.1371/journal.pbio.3000107
Online	https://bomb.bio/protocols/
Revision	V1.0 (14 th August 2018)

Summary

Plasmid extraction from cultured *E. coli* cells is probably one of the most common laboratory practices. In the late 1960s the first protocols for isolation of plasmid DNA were published [1–3], of which the alkaline lysis of bacterial cells in a slightly modified form became today's primarily used method [4–6]. Based on silica-coated magnetic beads (BOMB protocol #2.1) we have developed a high-throughput miniprep protocol that provides highly pure plasmid DNA and that can be used to purify 96 samples in parallel.

Chemicals

Name	Provider	PN	MW [g/mol]	Sa	fety codes
Acetic acid (CH₃COOH)	Roth Chemicals	6755.2	60.05	Danger	H: 314-226-290 P: 210-280- 303+361+353- 305+351+338-310
Dipotassium phosphate (K ₂ HPO ₄)	Roth Chemicals	P030.2	141.96	n.a.	n.a.
Ethanol (C₂H6O, 99.9%)	Honeywell / Riedel-de Haën	34963	46.07	Oanger	H: 225-319 P: 210-280- 305+351+338- 308+313
Glycerol (C ₃ H ₈ O ₃ , 86%)	Roth Chemicals	7533.2	92.09	n.a.	n.a.
Guanidinium chloride / Gu-HCl (CH₅N₃ · HCl)	Roth Chemicals	0037.1	95.53	(i) Warning	H302-315-319 P280-302+352- 305+351+338
Ethylenediaminetetraacetic acid dihydrate / EDTA (C ₁₀ H ₁₆ N ₂ O ₈ · 2 H ₂ O)	Roth Chemicals	8043.1	372.24	() Warning	H: 332-373 P: 260-314
Hydrochlorid acid fuming (HCl _(aq) , 37%)	Roth Chemicals	4625.2	36.46	Danger	H: 290-314-335 P: 280- 303+361+353- 304+340- 305+351+338-310
Monopotassium phosphate (KH ₂ PO ₄)	Roth Chemicals	3904.1	136.09	n.a.	n.a.
Potassium acetate (CH ₃ CO ₂ K)	Riedel-de Haën	32309	98.15	n.a.	n.a.

Name	Provider	PN	MW [g/mol]	Safety codes	
RNase A	Serva	34390.02	n.a.	a nger	H: 334 P: 261-284- 304+340-342+311
Sodium dodecyl sulfate / SDS (C12H25NaO₄S)	Roth Chemicals	CN30.3	288.38	Danger	H 302-315-318-412 P: 280-301+312- 302+352- 305+351+338- 332+313
Sodium hydroxide (NaOH)	Roth Chemicals	6771.2	40.00	Danger	H: 290-314 P: 280- 301+330+331- 305+351+338-310
Tris(hydroxymethyl)- aminomethane / Tris (C ₄ H ₁₁ NO ₃)	Roth Chemicals	AE15.3	121.14	() Warning	H: 315-319-335 P: 280-302+352- 305+351+338-312
Yeast extract	BD Biosciences	212750	n.a.	n.a.	n.a.

Please consult appropriate MSDS information before working with these chemicals! Use lab coat, gloves and eye protection at all times! The chemicals are available from other providers as well. No preference is given to the indicated vendors.

Buffers and solutions

TB media [7] (2 ml per sample, 200 ml per 96) – autoclaved, can be stored at RT for at least 6 months

1.2% tryptone
2.4% yeast extract
72 mM dipotassium phosphate (autoclave separately as 10x stock)
17 mM monopotassium phosphate (autoclave separately as 10x stock)
0.4% glycerol

P1 buffer (250 µl per sample, 25 ml per 96) - can be stored at 4 °C for up to 12 months

50 mM Tris-HCl pH 8.0 10 mM EDTA 100 μg/ml RNase A

P2 buffer (250 µl per sample, 25 ml per 96) – can be stored at RT for up to 12 months

200 mM sodium hydroxide 1% SDS

N3 buffer (500 μ l per sample, 50 ml per 96) – can be stored at RT for up to 12 months, prepare fresh if change of colour is observed

4.2 M Gu-HCl0.9 M potassium acetate(adjust pH to 4.8 with acetic acid)

<u>©080</u>

PE (1 ml per sample, 100 ml per 96) - can be stored at RT for at least 12 months

10 mM Tris-HCl pH 7.5 80% ethanol

Elution buffer (40 µl per sample, 4 ml per 96) – can be stored at RT for at least 12 months

10 mM Tris-HCl pH 8.5

Consumables and equipment

Temperature controlled incubation shaker (e.g. Infors HT Multitron Pro)

Plate centrifuge with swing-out rotor (e.g. Eppendorf, Centrifuge 5804R)

Microtiter plate orbital shaker (e.g. IKA MS 3 basic)

Heat block (e.g. Roth, Rotilabo[®]-block thermostat H250 – PN: Y264.1) or **incubator** (e.g. Thermo Scientific, Heratherm[™] Advanced Protocol Microbiological Incubator – PN: 51028066)

Magnetic stand for 96-well plate (e.g. BOMB microplate magnetic rack)

Multichannel pipettes

30 – 300 μl (e.g. Eppendorf, **Eppendorf Research**[®] **plus**, 8-channel – PN: 3125000052)

50 – 1200 µl (e.g. VWR, Multi-channel pipette, 8-channel – PN: 613-5422)

96-well deep well plates

2.2 ml (e.g. Sarstedt, MegaBlock® 96 Well – PN: 82.1972.002)

1.2 ml (e.g. Sarstedt, MegaBlock® 96 Well – PN: 82.1971.002)

Multistep pipette with 500 µl tips (e.g. Eppendorf, Multipette[®] M4 – PN: 4982000012)

Reservoirs (e.g. Roth, Rotilabo[®]-liquid reservoirs – PN: E830.2)

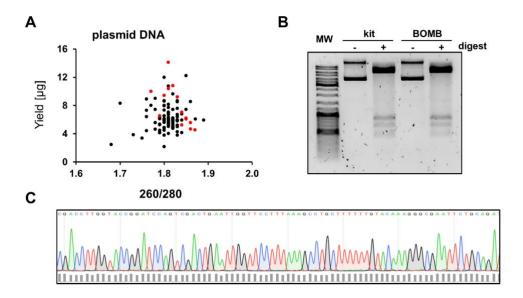
Seals (e.g. Bio-Rad, Microseal® 'B' Adhesive Seals – PN: MSB1001)

BOMB Plasmid preparation

Step	Bacterial culture growth	Time	\checkmark
1	Seed bacteria in TB with the appropriate antibiotics in a deep well plate (2.2 ml 96-well) and grow at 250 rpm at 37 °C for 15 to 24 h	mile	
-	Transfer 50-100 μ l of the bacteria culture to a 96-well plate, seal and store at 4 °C (positive clones can be used to inoculate cultures after sequencing/confirmation)		
Step	Plasmid DNA extraction		
2	Centrifuge in a swing-out rotor (20 min, 2000 g, 4 $^\circ$ C) and discard the supernatant	20 min	
	At this point, the pellets can be frozen at -20 °C and processed later		
3	Add 250 μl P1 buffer and shake at 1300 rpm until the pellets are completely resuspended	5 min	
	At this point, the cell suspension can be frozen at -20 °C and processed late		
4	Add 250 μ l P2 buffer , shortly mix at 500 rpm and keep at room temperature until the lysis is complete (~5 min)	5 min	
5	Add 500 μl N3 buffer and shake at 750 rpm for 5 min	10 min	
\wedge	Ensure a complete neutralization of the sample		
6	Centrifuge in a swing-out rotor (20 min, 2000 g, RT)	20 min	
7	Transfer 500 μ l of the supernatant to a fresh deep well plate (1.2 ml 96-well)	10 min	
$\underline{\mathbb{N}}$	Pipette carefully to avoid transferring the cell debris/precipitate	10 11111	
8	Add 500 μ l ethanol to bind the DNA to the silica beads and shake at 750 rpm for 5 min	10 min	
9	Add 20 to 50 μl (optimal 50 μl) stock solution of silica-coated magnetic beads (BOMB protocol #2.1)	5 min	
10	Shake at 500 rpm for 15 min	15 min	
11	Settle the magnetic beads on a magnetic stand and discard the supernatant	5 min	
$\underline{\mathbb{N}}$	Ensure that the beads are completely pelleted	5 11111	
Opt ⚠️	Repeat steps 7-11 once with another 300 μ l of supernatant for a maximal yield Avoid transferring cell debris!	45 min	
12	Remove the plate from the magnetic stand and add 500 μ l PE and mix well (by pipetting, or seal and vortex and/or inverting)	5 min	
13	Settle the magnetic beads on a magnetic stand and discard the supernatant	5 min	
14	Repeat the washing steps 12-13 once	10 min	
15	Remove the supernatant completely and dry the beads at 65 °C for ~20 min	20 min	
•	The beads are dry as soon as they turn brownish. Do not elute earlier!	30 min	
16	Add at least 40 μl of elution buffer or ddH₂O to elute the DNA from the beads, mix well for 15 min (shake at 1300 rpm) and spin down briefly.	35 min	
17	Settle the magnetic beads on a magnetic stand and transfer the supernatant to a 96-well collection plate (or separate tubes/strips)	10 min	
End	Measure concentration and purity	~3.5 (1.5 h ha	
- 	Store @ -20 °C or 4 °C		-

This work is licensed under a Creative Commons A

nCommercial-ShareAlike 4.0 International License.


Troubleshooting

Problem	Solution
Beads sticking to the wells	 Sonicate shortly in a sonic bath and/or centrifuge briefly
Pipetted unequal amounts of beads or water	• The silica-coated magnetic beads can settle quite quickly. Ensure they are fully suspended before pipetting
Bad DNA quality (260/280 < 1.6)	 Step 7 is particularly critical. Transferring a small or medium amount of cell debris may reduce the sample quality significantly, although the debris disappears during the following wash steps. Aspirate slowly Stay at the rim of the well (debris tends to be in the centre) Do not insert the pipette too far into the well In case any debris was picked up by the pipette, centrifuge the respective samples at higher g for another 5 min (e.g. in microcentrifuge tubes in a microcentrifuge). This will allow the debris to form a more compact pellet and thus simplify the transfer of the liquid
Low DNA concentration	 Low DNA concentration can have multiple reasons Buffers: Make sure the pH of N3 was properly adjusted Ethanol tends to evaporate over time, leading to a reduced concentration in PE, which might reduce the binding of the DNA to the beads during washing Amount of beads: Make sure the stock solution used during the process was not diluted (e.g. as for BOMB protocol #8.1) Remaining ethanol: before elution you have to ensure that the beads are completely dry. Their colour will turn from shiny black to brittle brown. If this was not the case, dry the beads again and elute a second time.
RNA contamination	Add fresh RNase A to P1.

Exemplary Results

Fig 1: Quality control of BOMB plasmid extraction. (A) Total plasmid DNA yield [µg] extracted from E. coli, plotted against the A260 nm/A280 nm ratio for each sample. DNA concentration and purity were measured with UV-Spectroscopy (NanoDrop). Black dots represent samples extracted using the BOMB plasmid extraction protocol #5.1, red dots represent samples processed using a commercial kit. (B) Comparison of commercially purified plasmid DNA and BOMB extracted DNA with and without restriction enzyme digestion. MW: Gene Ruler DNA Ladder (Thermo). (C) Exemplary sequencing trace of BOMB extracted plasmids with Sanger sequencing. A sequencing read length of at least 800-1000 nt is typically observed.

References

- 1. Clewell DB, Helinski DR. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969;62: 1159–1166. doi:10.1073/pnas.62.4.1159
- 2. Colman A, Byers MJ, Primrose SB, Lyons A. Rapid purification of plasmid DNAs by hydroxyapatite chromatography. Eur J Biochem. 1978;91: 303–310. doi:10.1111/j.1432-1033.1978.tb20966.x
- 3. Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979;7: 1513–1523. doi:10.1093/nar/7.6.1513
- 4. Marko MA, Chipperfield R, Birnboim HC. A procedure for the large-scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Anal Biochem. 1982;121: 382–387. doi:10.1016/0003-2697(82)90497-3
- Boom R, Sol CJ, Salimans M, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28: 495–503. doi:10.1556/AMicr.58.2011.1.7
- 6. Borodina TA, Lehrach H, Soldatov A V. DNA purification on homemade silica spin-columns. Anal Biochem. 2003;321: 135–137. doi:10.1016/S0003-2697(03)00403-2
- 7. Tartof K, Hobbs C. Improved media for growing plasmid and cosmid clones. Bethesda Res Lab Focus. 1987;9.