



| Protocol | #5.3                                                          |
|----------|---------------------------------------------------------------|
| Title    | BOMB plasmid DNA extraction using Sera-Mag carboxylated beads |
| Keywords | HT DNA miniprep, Sera-Mag, plasmid extraction                 |
| Authors  | Treitli S. C.                                                 |
| Citation | Treitli S.C., BOMB.bio, 2019                                  |
| Online   | https://bomb.bio/protocols/                                   |
| Editing  | V1.1 (Oberacker P., 26 <sup>th</sup> September 2019)          |

## **Chemicals**

| Name                                                                                        | Provider                          | PN       | MW<br>[g/mol] | Sat                    | fety codes                                                                      |
|---------------------------------------------------------------------------------------------|-----------------------------------|----------|---------------|------------------------|---------------------------------------------------------------------------------|
| Acetic acid (CH₃COOH)                                                                       | Merck                             | 1.09951  | 60.05         | Danger                 | H: 290-314<br>P: 280-<br>301+330+331-<br>305+351+338-<br>308+310                |
| Ethanol (C₂H6O, 99.9%)                                                                      | Honeywell<br>/ Riedel-<br>de Haën | 34963    | 46.07         | ð ()<br>Danger         | H: 225-319<br>P: 210-280-<br>305+351+338-<br>308+313                            |
| Ethylenediaminetetraaceti<br>c acid dihydrate / EDTA<br>$(C_{10}H_{16}N_2O_8 \cdot 2 H_2O)$ | Roth<br>Chemicals                 | 8043.1   | 372.24        | <b>Warning</b>         | H: 332-373<br>P: 260-314                                                        |
| Hydrochlorid acid fuming<br>(HCl <sub>(aq)</sub> , 37%)                                     | Roth<br>Chemicals                 | 4625.2   | 36.46         | Danger                 | H: 290-314-335<br>P: 280-<br>303+361+353-<br>304+340-<br>305+351+338-<br>310    |
| Polyethylene glycol 8000                                                                    | AppliChe<br>m                     | A2204    | ~8000         | n.a.                   | n.a.                                                                            |
| Potassium acetate<br>(CH <sub>3</sub> CO <sub>2</sub> K)                                    | Riedel-de<br>Haën                 | 32309    | 98.15         | n.a.                   | n.a.                                                                            |
| RNase A                                                                                     | Serva                             | 34390.02 | n.a.          | <b>&amp;</b><br>Danger | H: 334<br>P: 261-284-<br>304+340-<br>342+311                                    |
| Sodium Chloride (NaCl)                                                                      | Roth<br>Chemicals                 | 3957.2   | 58.44         | n.a.                   | n.a.                                                                            |
| Sodium dodecyl sulfate /<br>SDS (C12H25NaO₄S)                                               | Roth<br>Chemicals                 | CN30.3   | 288.38        | <b>Danger</b>          | H 302-315-318-<br>412<br>P: 280-301+312-<br>302+352-<br>305+351+338-<br>332+313 |

# Contribution



| Name                                                                                             | Provider             | PN                 | MW<br>[g/mol] | Safety<br>codes |                                                              |
|--------------------------------------------------------------------------------------------------|----------------------|--------------------|---------------|-----------------|--------------------------------------------------------------|
| Sodium hydroxide (NaOH)                                                                          | Roth<br>Chemicals    | 6771.2             | 40.00         | Danger          | H: 290-314<br>P: 280-<br>301+330+331-<br>305+351+338-<br>310 |
| Tris(hydroxymethyl)-<br>aminomethane / Tris<br>(C <sub>4</sub> H <sub>11</sub> NO <sub>3</sub> ) | Roth<br>Chemicals    | AE15.3             | 121.14        | ()<br>Warning   | H: 315-319-335<br>P: 280-302+352-<br>305+351+338-<br>312     |
| Tween 20                                                                                         | Roth<br>Chemicals    | 9127.1             | 1228          | n.a.            | n.a.                                                         |
| Sera-Mag SpeedBeads                                                                              | GE<br>Healthcar<br>e | 4515210<br>5050250 | n.a.          | n.a.            | n.a.                                                         |

Please consult appropriate MSDS information before working with these chemicals! Use lab coat, gloves and eye protection at all times! The chemicals are available from other providers as well. No preference is given to the indicated vendors.

## **Buffers and solutions**

#### 1 M Tris (50 ml)

6.057 g – TRIS 40 ml of MilliQ water Adjust the pH to 8.0 with concentrated HCI Bring the final volume to 50 mL Filter sterilize.

#### 0.5 M EDTA (50 ml)

9.31g – EDTA 40 ml of MilliQ water Adjust the pH to 8.0 NaOH. You will need around one gram of NaOH. When you get close to pH 8, it is better to use NaOH solution, to avoid overshooting the pH. Bring the final volume to 50 mL. Filter sterilize.

#### 1 M NaOH (50 ml)

2g -NaOH Dissolve in 40 ml of MilliQ water. Bring the final volume to 50 ml

P1 buffer - can be stored at 4 °C for up to 12 months

| Reagent                                                                  |                                          | Concentrations                                                     | For 50 ml           |   |
|--------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|---------------------|---|
| Tris-HCl pH                                                              | 8.0                                      | 50 mM                                                              | 2.5 ml of 1 M stock |   |
| #5.3 BOMB plasmid DNA<br>extraction using Sera-Mag<br>carboxylated beads | This work is licensed under a <u>Crr</u> | Eative Commons Attribution-NonCommercial-ShareAlike 4.<br>License. | 0 International     | 2 |





| EDTA   | 10 mM     | 1 ml of 0.5 M stock         |
|--------|-----------|-----------------------------|
| RNAseA | 200 μg/ml | 100µl from a 100mg/ml stock |

adjust the volume with MilliQ water to 50 ml P2 buffer - can be stored at RT for up to 12 months

| Reagent | Concentrations | For 50 ml          |
|---------|----------------|--------------------|
| NaOH    | 200 mM         | 10 ml of 1 M stock |
| SDS     | 1%             | 0.5 g              |

adjust the volume with MilliQ water to 50 ml

#### P3 buffer - can be stored at RT for up to 12 months

| Reagent           | Concentrations | For 50 ml |
|-------------------|----------------|-----------|
| Potassium acetate | 2.3 M          | 11.3 g    |
|                   |                |           |

Add water till you have around 30 ml solution. Adjust the pH of the solution to 4.8 using acetic acid. Afterwards adjust the volume with MilliQ water to 50 ml

#### PB buffer – can be stored at 4 °C for up to 12 months

| Reagent                     | Concentrations | For 50 ml                    |
|-----------------------------|----------------|------------------------------|
| NaCl                        | 2.5 M          | 25 ml of 5 M stock           |
| Tris-HCl pH 8.0             | 10 mM          | 0.5 ml of 1 M stock          |
| EDTA                        | 1 mM           | 0.1 ml of 0.5 M stock        |
| PEG 8000                    | 20%(w/v)       | 10g                          |
| Tween 20                    | 0.05%          | 0.25 ml of 10% stock         |
| Sera-Mag carboxylated beads | 1.14% (v/v)    | 570 μl of stock (wash first, |
|                             |                | see below)                   |

adjust the volume with MilliQ water to 50 ml

#### PE buffer – can be stored at RT for up to 12 months

| Reagent         | Concentrations | For 50 ml           |
|-----------------|----------------|---------------------|
| Tris-HCl pH 7.5 | 10 mM          | 0.5 ml of 1 M stock |
| Ethanol         | 80 %           | 41.7 ml of 96% EtOH |
| MilliQ water    | N/A            | 7.8 ml              |

#### EB buffer - can be stored at RT for up to 12 months

| Reagent                                      | Concentrations | For 50 ml           |  |
|----------------------------------------------|----------------|---------------------|--|
| Tris-HCl pH 8.5                              | 10 mM          | 0.5 ml of 1 M stock |  |
| adjust the volume with MilliO water to 50 ml |                |                     |  |

adjust the volume with MilliQ water to 50 ml





# **Consumables and equipment**

Plate centrifuge with swing-out rotor (e.g. Eppendorf Centrifuge 5804R)

Microtiter plate orbital shaker (e.g. IKA MS 3 basic)

Magnetic stand for 96-well plate (e.g. BOMB microplate magnetic rack)

#### **Multichannel pipettes**

- 30 300 μl (e.g. Eppendorf, **Eppendorf Research® plus**, 8-Channel PN: 3125000052)
- 50 1200 μl (e.g. VWR, Multi-channel pipette, 8-channel PN: 613-5422)

96-well PCR plate (e.g. Sarstedt – PN: 72.1979.102)

Seals (e.g. Bio-Rad, Microseal<sup>®</sup> 'B' Adhesive Seals – PN: MSB1001)

## **Beads Washing procedure**

| Step | Washing                                                                                                                                                                                               | Time  | $\checkmark$ |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| 1    | Resuspend the <b>stock of Sera-Mag carboxylated beads</b> by vortexing. Ensure that the beads are resuspended completely before proceeding forward                                                    | 1 min |              |
| 2    | Take out <b>570 μl</b> of beads as quickly as possible (to avoid the beads settling) and transfer them to a new microcentrifuge tube.                                                                 | 1 min |              |
| 3    | Settle the magnetic beads on a magnetic stand and discard the supernatant.                                                                                                                            | 5 min |              |
| 4    | Add 1 ml of MilliQ water. Remove the tube from the magnet, resuspend the beads and centrifuge briefly. Put back the tube on the magnet and pellet the beads                                           | 2 min |              |
| 5    | Remove the supernatant and add 1 ml of MilliQ. Remove the tube from the magnetic stand and resuspend the beads. After resuspension, the beads are ready to be used in preparing the <b>PB buffer.</b> | 5 min |              |



# Community Contribution



# **BOMB Plasmid DNA extraction using Sera-Mag carboxylated** beads

| 01                 |                                                                                                           | <b></b>  |              |
|--------------------|-----------------------------------------------------------------------------------------------------------|----------|--------------|
| Step               | Clean-up                                                                                                  | Time     | $\checkmark$ |
| 1                  | Pellet the bacteria from a 5 ml culture in a centrifuge at 6000 x g for 5 minutes.                        |          |              |
|                    | Discard the supernatant.                                                                                  |          |              |
| 2                  | Resuspend the pellet in $100 \ \mu l$ of P1 buffer. Make sure the pellet is completely                    |          |              |
|                    | resuspended.                                                                                              |          |              |
| 3                  | Add <b>150 µl</b> of <b>P2 buffer</b> , mix by flipping the tube a few times and incubate at room         | 5 min    |              |
|                    | temperature for 5 minutes.                                                                                |          |              |
| 4                  | Add <b>125 μl</b> of <b>P3 buffer,</b> mix by flipping the tube a few times.                              | 1 min    |              |
| Å                  |                                                                                                           |          |              |
| <u>_!\</u>         | Ensure a complete neutralization of the sample                                                            |          |              |
| 5                  | Centrifuge for 10 minutes at >14.000 x g                                                                  | 10 min   |              |
|                    | Transfer 350 $\mu$ l of the supernatant to a new tube.                                                    | 1 min    |              |
| 6                  | Pipette carefully to avoid transferring the cell debris/precipitate. Transferring cell                    | T 111111 |              |
|                    | debris can cause protein contamination.                                                                   |          |              |
| <u> </u>           | Resuspend the beads in the <b>PB buffer</b> by vortexing. Make sure that all the beads are                | 1 min    |              |
|                    | resuspended before proceeding forward.                                                                    | ± 111111 |              |
|                    | Ensure the beads are fully resuspended otherwise you might lose your DNA.                                 |          |              |
| <u>``</u>          | Add <b>350 <math>\mu</math>I of PB buffer,</b> mix by flipping the tube a few times. Incubate on a shaker | 15 min   |              |
| 8                  | for 15 min at RT.                                                                                         | 10 1111  |              |
|                    | Centrifuge the tube briefly (2-3 seconds). Settle the magnetic beads on a magnetic                        | 5 min    |              |
| 9                  | stand and discard the supernatant.                                                                        | 5        |              |
|                    | Ensure that the beads are completely pelleted                                                             |          |              |
| 10                 | Remove the tube from the magnetic stand and add 1 ml of <b>PE buffer.</b> Mix well (by                    | 2 min    |              |
| 10                 | pipetting, or vortex and spin down).                                                                      |          |              |
| 11                 | Settle the magnetic beads on a magnetic stand and discard the supernatant.                                | 2 min    |              |
|                    |                                                                                                           |          |              |
| 12                 | While the tube is on the magnet, add 1 ml of <b>PE buffer.</b> Wait for 30 seconds and then               | 2 min    | $\Box$       |
|                    | remove the supernatant.                                                                                   |          |              |
| 13                 | Remove the tube from the magnetic stand and add 500 $\mu$ l of <b>PE buffer.</b> Mix well (by             | 2 min    | $\Box$       |
|                    | pipetting, or vortex and spin down).                                                                      | - ·      |              |
| 14                 | Settle the magnetic beads on a magnetic stand and discard the supernatant.                                | 2 min    |              |
| 15                 | Remove the tube from the magnet and centrifuge it briefly to pellet all the liquid.                       | 1 min    |              |
|                    | Put back the tube on the magnet and using a 10 $\mu$ l pipette, remove all the remaining                  | 1 min    |              |
| 16                 | liquid with care to not take up any beads.                                                                | T 111111 |              |
| 17                 | Put the tube on a heat block and dry the beads for approximately 5 minutes at 37°C.                       | 5 min    |              |
| 17                 | The table of a freat block and dry the beaus for approximately 5 minutes at 57°C.                         |          |              |
|                    | The beads are dry when you see the beads pellet starting to crack. <b>Do not over-dry.</b>                |          |              |
| 18                 | Add 50 µl of <b>elution buffer</b> to elute the DNA from the beads. Pipette well to                       | 15 min   |              |
| τõ                 | resuspend and make sure that all the beads from the side of the tube are                                  | 10       |              |
|                    | resuspended. Incubate for 10-15 min at 37°C.                                                              |          |              |
| 19                 | Settle the magnetic beads on a magnetic stand and transfer the supernatant to a new                       | 5 min    |              |
| 13                 | tube.                                                                                                     | <b>U</b> |              |
|                    | Make sure the beads are completely settled before transferring the supernatant.                           |          |              |
| $\mathbf{\Lambda}$ | Avoid transferring any beads. If possible, leave some supernatant in the tube to                          |          |              |
|                    | minimize carryover.                                                                                       |          |              |

# Community Contribution **BOMB**.bio



# **Exemplary results**

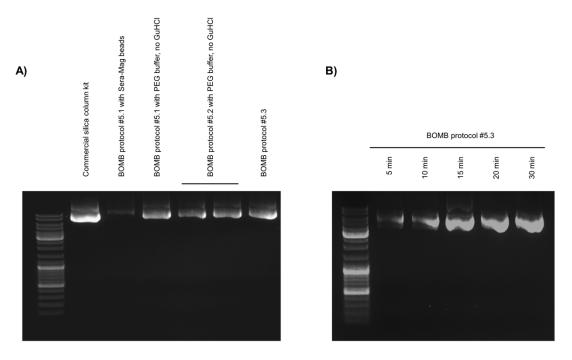



Fig 1: Optimisation of BOMB plasmid extraction using commercial Sera-Mag beads. (A) Comparison of different BOMB protocols with and without PEG, as well as a commercial column-based kit. (B) Variation of binding time in step 8 shows an increase of yield up to 15 min. MW: Gene Ruler DNA Ladder (Thermo).